ATHEROSCLEROSIS

Hossein Mehrani Professor of Clinical Biochemistry

Definition

Atherosclerosis: Is a chronic inflammatory process characterized by plaque formation within the vessel wall of arteries and extensive necrosis and fibrosis of surrounding tissues

Arteriosclerosis: is hardening of the artery walls, resulting in thickening and calcification

Atherosclerosis is a Leading Cause of Death Worldwide

THEORY AND CONCEPT OF ATHEROSCLEROSIS

MAJOR CLINICAL MANIFESTATIONS OF ATHEROTHROMBOSIS

Ischemic Stroke

Myocardial Infarction Transient Ischemic attack

Angina:

- Stable
- Unstable
- Peripheral arterial disease:
 - Intermittent Claudication
- Rest Pain
 - Gangrene
 - Necrosis

Local factors Elevated Prothrombotic Factors: Fibrinogen, CRP, PAI-1 Blood flow patterns, Vessel diameter, Arterial wall structure Systemic Conditions Generalized Atherosclerosis History of vascular **Disorders** events **Manifestations Hypertension** • Obesity **Myocardial Infarction**, • Hyperlipidemia Diabetes stroke, vascular death • Hypercoagulable states • Homocystinemia Genetic Lifestyle **Genetic traits** Smoking Gender • Diet Age • Lack of exercise

Coronary Arteries Diseases Risk Factors

- Non modifiable risk factors:
 - Increasing age
 - Gender

- Family history of premature heart disease
- Genetics Defects
- Modifiable risk factors:
 - High LDL cholesterol
 - Low HDL cholesterol
 - High blood pressure
 - **Diabetes**
 - Obesity (especially abdominal obesity)
 - Physical inactivity
 - Cigarette smoking
 - Diet high in saturated fat, *trans* fat, cholesterol, low in fruits, vegetables and whole grains

Most Important ROS and RNS

Reaction		Note		
02+	$e^{-} \rightarrow 0_{2}^{\cdot-}$	Superoxide formation (various sources, see text)		
202	$^{-}+2 \text{H}^{+} \rightarrow \text{H}_2\text{O}_2 + \text{O}_2$	Hydrogen peroxide formation, catalyzed by SODs		
Fe ²⁺	+H2O2 -> Fe3++·OH+OH-	Fenton reaction		
02	$+H_2O_2 \rightarrow OH + OH^- + O_2$	Haber-Weiss reaction (iron-catalyzed)		
L-ary	ginine→NO ⁺ L-citrulline	NO' formation (catalyzed by NOS)		
NO.	$+0_2^{-}\rightarrow 0N00^{-}$	Peroxynitrite formation		

•NO	Nitric Oxide	
•NO2	Nitrogen dioxide	HOCI
ONOO ⁻	Peroxynitrite	
02.	Superoxide	MYELOPEROXIDASE
•OH	Hydroxyl radical	
H ₂ O ₂	Hydrogen peroxide	
ROO.	Peroxy radical	
HOCI	Hypochlorous acid	

Lipid and Protein Peroxidation

in LDL; HDL3-contained 50% more F2-isoprostanes than HDL2

LDL and HDL in Atherosclerosis

ApoB-containing lipoproteins -LDL—most common/most

- important
- -IDL
- -VLDL /VLDL remnants -Chylomicron remnants -Lp(a)

Vasoconstriction Thrombosis Adhesion Molecules Growth Factors Inflammation Oxidants activity Vasodilatation Thrombolysis Repair Platelet Activation Antiproliferation Antiinflamation Antioxidants

Stable plague

Anatomy of Arterial Vessel Membrane

cytokines

Smooth muscle cells

IFNy CD40

Th1

foam cells

IL-13

11-4

IL-10

1-Minimally Modified LDL induces expression of cell adhesion molecules

cells

2- Smooth muscle cells migrate into the **Intima, proliferate and secrete** extracellular matrix proteins that form a fibrous plaque **3-Fibrous Cap is weakened, tissue** factors are released, recruitment of platelets and formation thrombosis

Macrophage Death as a Factor that Limits Lesion Cellularity

Apoptotic Inducers: TNFα, Fas Ligand, Growth factor withdrawal, Oxidized LDL, Oxidized Phospholipids Oxysterol (7-ketocholesterol)

Coronary Atherosclerosis Causes MI

Summary of Biochemical Events Following Coronary Artery Occlusion

Myeloperoxidase Early Indicator of Acute Coronary Syndrome and Predictor of Future Cardiovascular Events

Relative Risk Factors for Future Outcomes

More Than a Biomarker: Dose CRP Plays Direct Role in Atherosclerosis?

CRP localizes in atherosclerotic but not normal intima

CRP induces Complement activation

CRP recruits monocyte into arterial wall

CRP induces production of tissue factor in monocytes

CRP blunts endothelial vasoreactivity

CRP induces production of MCP-1, ET-1

CRP attenuates **NO** production and decreases eNOS expression

CRP induces PAI-1 expression stabilizes PAI-1 mRNA

CRP triggers oxidation of LDL cholesterol

CRP mediates LDL uptake by macrophages

Biomarker Assessment of high Risk Patients may Include

- Inflammatory cytokines (IL-6, IL-8)
 - Cellular adhesion molecules (Integrins, Selectins, VCAM)
 - Acute-phase Reactants (hs-CRP)
 - Biomarkers of ischemia (Ischemia Induced Alb)
 - Biomarkers of myocardial stretch (BNP)
 - Biomarkers of myocardial necrosis (Troponin, CK-MB, Myoglobin)

Available Lipid Lowering Agents

Agent		HDL-C↑	Primary	<u>Primary Use</u>	
Nicotinic acid		15-35%	HDL ↑	HDL ↑	
Fibrates		5-20%	TG ↓	$\mathbf{TG}\downarrow$	
Statins		5-15%	$\mathbf{LDL}\downarrow$		
Prescription Om-3		2-10%	TG↓	TG↓	
Bile-acid resins		2-5%	$\mathbf{LDL}\downarrow$	$\mathbf{LDL}\downarrow$	
Estrogens		10-25%	Hot flashes		
CETP	Dose	HDL-C	LDL-C	TG (%)	
Inhibitors	(Mg/day)	(%)	(%)		
Torcetrapib	60	61	-24	-9	
Anacetrapib	100	138	-40	-7	

Thank You for Your Patience

