ANALYTICAL APPROACH IN LIPIDS ABNORMALITIES

R. Mohammadi Biochemist (Ph.D.) Faculty member of Medical Faculty

LABORATORY RISK FACTORS

 Common Lipid Markers Including TC, HDL-C, LDL-C & TG
 Uncommon Lipid Markers Including Lp(a), beta-VLDL, Apo A-I & Apo B-100

ATP III (Adult Treatment Panel III) CLASSIFICATION IN ADULTS

LDL Cholesterol				
<tool><100</tool>	Optimal			
100-129	Near Optimal			
130-159	Borderline high			
160-189	High			
■ ≥190	Very high	T		
HDL Cholesterol				
40 Low				
■ ≥60 Hiah				

Total Cholesterol● <200</td>Desirable● 200-239Borderline high● ≥240High

Triglycerides<150</td>Normal150-199Borderline high200-499High≥500Very high

NCEP (National Cholesterol Education Program) CLASSIFICATION IN CHILDREN AND ADOLESCENTS

LDL Cholesterol			
■ <110	Desirable		
110-120	Borderline		
■ ≥130	High		

Total Cholesterol<170</td>Desirable170-199Borderline≥200High

FACTORS AFFECTING LIPID & LIPOPROTEIN DETERMINATION

Factors Related to Patients
 Factors Related to Specimen
 Factors Due to Analysis

FACTORS RELATED TO PATIENTS

Biological variation

 Physiological variation
 Age
 Age
 Sex
 Season
 Diet
 Fasting
 Lifestyle

 Disease

Drugs

Inter-individual & Intra-individual Biological Variations

Analyte	Inter- Individual CV%	Intra- Individual CV%	Method CV%	
Triglyceride	56.8	28.8	4.7	
Cholesterol	22.3	8.2	2.3	
HDL-C	28.3	12.4	2.5	
Apo B	27.6	9.5	2.7	

Physiological Variation

The NCEP guidelines recommended averaging at least two successive measurments to reduce the effects of both preanalytic and analytic sources

Age

Cholesterol concentration increases by aging in both sex with beginning from adulthood

Sex

After childhood and up to age 50, cholesterol concentration is lower in women than men

Season

Cholesterol concentration is slightly more in winter

Recent Feeding

Chylomicron uptake requires 6-9h
 So , 9 hours fasting is sufficient, but usually 12 hours fasting is recommended
 Fasting is not necessary for TC and HDL-C

Diet

- Saturated Fats and cholesterol result in considerable increase in chlesterol concentration
- Diet affecting on lipid profile requires several weeks
- So, patient should have a usual diet for 2 weeks and no weight change

Diseases

- Patient should not have MI or shock during previous month
- Fever, truma, surgery increase TG and lower TC and HDL-C
- Weight loss results in decreasing TG and transient increasing TC and LDL-C
- Chronic disease results in severe decrease in LDL-C and HDL-C
- Diabetes, Thyroid disease, liver disease, and renal disease result in secondary dyslipidemias

Drugs

Different drugs affect on patient lipid profile, e.g. OCP increases VLDL and anabolic steroids increase VLDL and decrease HDL

Abnormal results should be repeat 2-4 weeks later

FACTORS RELATED TO SPECIMEN

Posture during sample collection
Prolonged venous occlusion
Venous vs capillary samples
Plasma vs serum
Storage

NCEP Guidelines for Acceptable Measurement Error

Analyte	Bias	CV	Total Error
Triglyceride	=< 5%	=< 5%	=< 15%
Cholesterol	=< 3%	=< 3%	=< 9%
HDL-C	=< 5%	=< 4%	=< 13%
LDL-C	=< 4%	=< 4%	=< 12%

CHOLESTEROL DETERMINATIOM

Chemical
Liberman-Burchard
Schoenheimer-Sperry
Abell-Kendal

CHOLESTEROL DETERMINATIOM

Enzymatic

Cholesteryl Ester

Cholesterol + O2

Choesterol Oxidase

Cholesterol + FFA

Oixidized Cholesterol + H2O2

H2O2 + Chromogen

Peroxidase

Colored Complex + H2O

CHOLESTEROL DETERMINATIOM


Sample
Fasting Is Not Necessary
Efect of Posture & Venous Stasis
Increase during pregnancy
Interference due to sitosterol
Is not affected by activity, alcohol, and OCP
Stable for 4 d, 3 m, and Some years at 4°C, -20°C and -70°C Respectively

TRIGLYCERIDE DETERMINATION

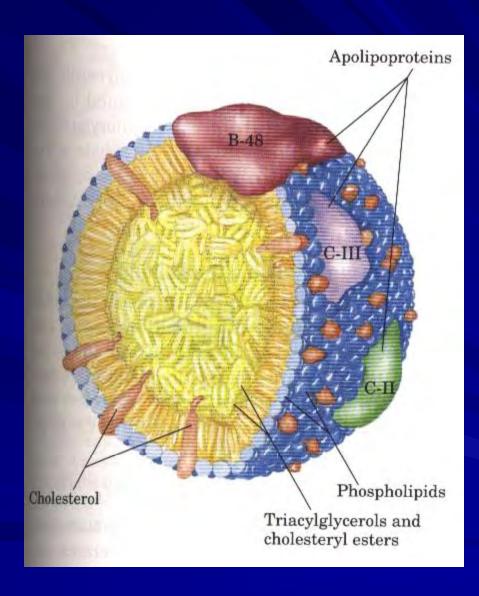
Chemical

Extraction
Hydrolysis
Glycerol Determination

TRIGLYCEROIDE DETERMINATIOM

TRIGLYCERIDE DETERMINATION

Glycerol Interference Severe Activity Some uncontrolled diabetics Very high TG concentration Long storage Hyperglycerolemia Medication Contamination

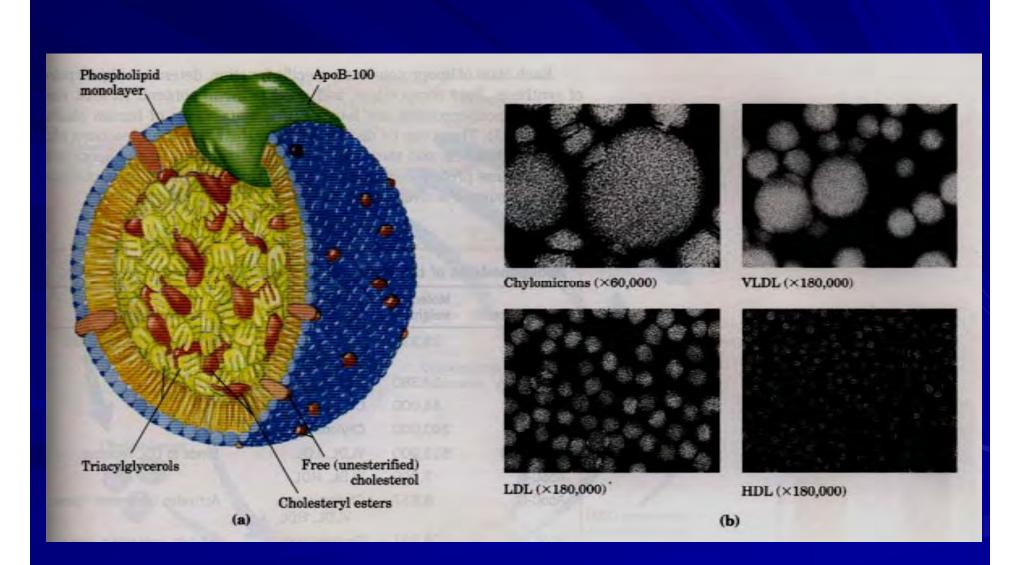

TRIGLYCERIDE DETERMINATION

Specimen

- Fasting Is Necessary
- Affected by Posture, Venous Stasis, Activity, alcohol, OCP
- Increases during pregnancy
- Oxidants & Reductants
- Testing in the Same Day
- If Necessary, Storage at 4°C for a few days, -20°C for 3 m and -70°C for Years

LIPOPROTEIN ANALYSIS

Ultracentrifuge
Electrophoresis
Serum Appearance
Precipitation Methods
Calculation
Apolipoprotein Derermination



MAJOR LIPOPROTEINS

 CHYLOMICRON
 VERY LOW DENSITY LIPOPROTEINS (VLDL)
 LOW DENSITY LIPOPROTEINS (LDL)
 HIGH DENSITY LIPOPROTEINS (HDL)

MAJOR LIPOPROTEINS

LIPOPROTEINS	DENSITY (g/ml)	DIAMETER (nm)	ELECTROPH ORESIS	PROTEIN (%)	TRIGLYCE RIDE (%)	CHOLESTER OL (%)	PHOSPHOLI PID (%)
Chylomicron	<0.950	75-1200	Origin	1-2	86	4	8
VLDL	0.950-1.006	25-75	Pre- β	10	50	20	20
LDL	1.019-1.063	20-25	β	20	11	46	22
HDL	1.063-1.210	7.5-20	α	50	3	27	30

MINOR LIPOPROTEINS

Chylomicron Remnants
VLDL Remnants (IDL)
Beta-VLDL (Floating β Lipoprotein)
lipoprotein (a) or Lp(a)

SERUM APPEARANCE

Increased Chylomcron — Turbidity, Creamy Layer
 Increased VLDL _____ Turbidity
 Increased LDL — Clear
 Increased HDL — Clear

HDL-C DETERMINATION

 Precipitation of Apo B Containing Lipoproteins (VLDL, IDL, LDL) by
 Polyanions & Bivalent Cations Heparine Sulfate & Mn²⁺ Dextran Sulfate & Mg²⁺ Sodium Tungstate & Mg²⁺

LDL-C DETERMINATION

Ultracentrifugation
 Immunochemical
 Calculation with *Friedwald Equation*

Total-C = HDL-C + LDL-C + VLDL-C

 $LDL-C = Total-C - (HDL-C + \frac{TG}{5})$

Friedewald Equation Assumptions

All plasma TGs are carried in VLDL
 TG/Chol ratio of VLDL is invarient

Friedewald Equation Limitations

Factor that gives the best estimate of VLDL-C varies among populations and depends on the triglyceride method used

There must be no chylomicron, chylomicron remnant, IDL, β-VLDL and Lp(a)

APOLIPOPROTEINS DETERMINATION

Apo AI
Apo B
Lp(a)

